实例要求 3 K$ A/ P ^3 Q9 q5 [, k9 m
实现⼀个复数类 Complex 。 Complex 类包括两个 double 类型的成员 real 和 image ,分别表示复数的实部和虚部。对 Complex 类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。2 d5 m1 \/ s, J
重载流提取运算符 >> ,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:
. e$ [& m+ Y5 d2 t% n: M <p>1</p><p>2</p><p>-1.1 2.0</p><p>+0 -4.5</p>
重载流插⼊运算符 << ,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号:
, z% q% h/ e7 w4 L E, O# ~0 w <p>1</p><p>2</p><p>(-1.1+2.0i)</p><p> (0-4.5i)</p>
每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。
% e, Y* a! v2 F0 U6 Y+ O4 ]6 W- R) f8 U 输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi) 的格式。注意不能输出全⻆括号。$ p, c! `* @/ ~# [
样例输⼊ a4 p6 d, J! `
1
. k, g9 r6 M/ n; L+ S 2
1 D9 w3 N# h- b5 `0 ~5 x -1.1 2.0
6 g! }9 M; O" W9 b; S 0 -4.5
9 C4 `4 e2 D8 }/ z, C1 n 样例输出 : h7 B3 C% ^; f: _7 z) P
18 |* o0 R, w, ?& h: B
2
/ `6 l+ {4 C9 @% b% l$ n 3
; M# B6 t& k2 D/ g 4
8 H6 }6 k) R. o2 [$ F) \ 5
4 }& h* f; d p% N/ B& B; U (-1.1+2i) (0-4.5i)
# }. ]- M( _, f$ }- u# n4 V+ P (-1.1-2.5i)
0 t/ i, g R+ K* f (-1.1+6.5i)5 }1 Y `- p* `# j' h( u: o: S
(9+4.95i); r& g+ ^% f+ H4 Q1 h- Z% t) u
(-0.444444-0.244444i)5 b( A. Q2 N' Q. }# Q4 d- Y
提示 ; s! x8 z2 q2 {+ O
需要注意,复数的四则运算定义如下所示:
4 E$ h* `- e8 |: Q5 z/ O 加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i 减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)−(c+di)=(a−c)+(b−d)i 乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(ac−bd)+(bc+ad)i 除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc−ad)/(c2+d2)]i- c4 x! X0 L9 v7 `. y! H
两个流操作运算符必须重载为 Complex 类的友元函数,此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0 ,那么输出应该为 3+1.0i 。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream 提供的 setf() 函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:
9 Y6 t6 f+ c! \) h- F v ostream os;
os.setf(std::ios::showpos);
os << 12;
输出内容会是 +12 。( F, S/ s8 ]; E+ s
⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:
1 }% v' C1 y" J2 ?& J& I os.unsetf(std::ios::showpos);
即可恢复默认的设置(不输出额外的正号)
0 @1 L0 I( h* Y: i2 Q r& ?$ ~( a 代码实现
' n/ d7 ^' n3 F5 H& r- T #include <iostream>
using namespace std;
const double EPISON = 1e-7;
class Complex
{
private:
double real;
double image;
public:
Complex(const Complex& complex) :real{ complex.real }, image{ complex.image } {
}
Complex(double Real=0, double Image=0) :real{ Real }, image{ Image } {
}
//TODO
Complex operator+(const Complex c) {
return Complex(this->real + c.real, this->image + c.image);
}
Complex operator-(const Complex c) {
return Complex(this->real - c.real, this->image - c.image);
}
Complex operator*(const Complex c) {
double _real = this->real * c.real - this->image * c.image;
double _image = this->image * c.real + this->real * c.image;
return Complex(_real, _image);
}
Complex operator/(const Complex c) {
double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image);
double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image);
return Complex(_real, _image);
}
friend istream &operator>>(istream &in, Complex &c);
friend ostream &operator<<(ostream &out, const Complex &c);
};
//重载>>
istream &operator>>(istream &in, Complex &c) {
in >> c.real >> c.image;
return in;
}
//重载<<
ostream &operator<<(ostream &out, const Complex &c) {
out << "(";
//判断实部是否为正数或0
if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos);
out << c.real;
out.setf(std::ios::showpos);
out << c.image;
out << "i)";
return out;
}
int main() {
Complex z1, z2;
cin >> z1;
cin >> z2;
cout << z1 << " " << z2 << endl;
cout << z1 + z2 << endl;
cout << z1 - z2 << endl;
cout << z1*z2 << endl;
cout << z1 / z2 << endl;
return 0;
}
! Q1 z0 Z) Q3 V) M2 k& w