实例要求 2 b& R6 C! @* {
实现⼀个复数类 Complex 。 Complex 类包括两个 double 类型的成员 real 和 image ,分别表示复数的实部和虚部。对 Complex 类,重载其流提取、流插⼊运算符,以及加减乘除四则运算运算符。
$ X8 I" s7 x+ n( v* d 重载流提取运算符 >> ,使之可以读⼊以下格式的输⼊(两个数值之间使⽤空⽩分隔),将第⼀个数值存为复数的实部,将第⼆个数值存为复数的虚部:$ \3 F p( `" p/ [* t
<p>1</p><p>2</p><p>-1.1 2.0</p><p>+0 -4.5</p> 重载流插⼊运算符 << ,使之可以将复数输出为如下的格式⸺实部如果是⾮负数,则不输出符号位;输出时要包含半⻆左右⼩括号:8 `; \" u# {; G, V: ^, T+ E
<p>1</p><p>2</p><p>(-1.1+2.0i)</p><p> (0-4.5i)</p> 每次输⼊两个复数,每个复数均包括由空格分隔的两个浮点数,输⼊第⼀个复数后,键⼊回⻋,然后继续输⼊第⼆个复数。3 H) A- S& b" C& z
输出两个复数,每个复数占⼀⾏;复数是由⼩括号包围的形如 (a+bi) 的格式。注意不能输出全⻆括号。% y3 ]1 `/ I! M' y
样例输⼊ % i4 F+ E+ T) A- Q7 _
1
! {: X: Q# @! o8 f 2
, v4 ]( E2 E: |' |. p" C -1.1 2.0/ x- N3 Z& m1 D2 c+ g! M/ }
0 -4.55 v* f' S, f& R* s& a
样例输出
0 q$ L3 [1 l" ]+ @- q' x- _! } 1" i" j! V Y m9 d7 ~% r
2- i0 Q: {" d" @. R& t$ C# s
3% [; Y2 Q) R) s1 Z$ m+ |* ?
4$ s$ x' s( C/ }3 X6 V% P' e
5
, \$ [% p8 F7 g; _: A6 n (-1.1+2i) (0-4.5i) i$ Q; }$ s$ w5 _
(-1.1-2.5i)
3 `) C! \4 x! w# K! @5 o (-1.1+6.5i)
1 T# x# h: i( Z7 ?* \# Z; p (9+4.95i)# H% s; t$ M8 a, Q4 \) }, T
(-0.444444-0.244444i)% H& k' P# D% Z P0 o- m
提示
$ y+ k& y: Q; u3 q9 z% t 需要注意,复数的四则运算定义如下所示:
, g; V% Y; k1 \+ S4 e. Z* c" ] 加法法则: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a + bi) + (c + di) = (a + c) + (b + d)i (a+bi)+(c+di)=(a+c)+(b+d)i 减法法则: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a + bi) − (c + di) = (a − c) + (b − d)i (a+bi)−(c+di)=(a−c)+(b−d)i 乘法法则: ( a + b i ) × ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a + bi) × (c + di) = (ac − bd) + (bc + ad)i (a+bi)×(c+di)=(ac−bd)+(bc+ad)i 除法法则: ( a + b i ) ÷ ( c + d i ) = [ ( a c + b d ) / ( c 2 + d 2 ) ] + [ ( b c − a d ) / ( c 2 + d 2 ) ] i (a + bi) ÷ (c + di) = [(ac + bd)/(c^2 + d^2 )] + [(bc − ad)/(c^2 + d^2)]i (a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc−ad)/(c2+d2)]i
! P* d! ~8 m- {6 R7 F0 A 两个流操作运算符必须重载为 Complex 类的友元函数,此外,在输出的时候,你需要判断复数的虚部是否⾮负⸺例如输⼊ 3 1.0 ,那么输出应该为 3+1.0i 。这⾥向⼤家提供⼀种可能的处理⽅法:使⽤ ostream 提供的 setf() 函数 ⸺它可以设置数值输出的时候是否携带标志位。例如,对于以下代码:8 k$ z4 z4 j9 W, `; N2 ]
ostream os;
os.setf(std::ios::showpos);
os << 12; 输出内容会是 +12 。: ]4 X# Z$ d8 c) J3 N1 _4 W
⽽如果想要取消前⾯的正号输出的话,你可以再执⾏:
6 [* [$ J+ `' I# x# ~ os.unsetf(std::ios::showpos); 即可恢复默认的设置(不输出额外的正号)1 g; q& k$ [/ N* w# i
代码实现
: l s. e l# n #include <iostream>
using namespace std;
const double EPISON = 1e-7;
class Complex
{
private:
double real;
double image;
public:
Complex(const Complex& complex) :real{ complex.real }, image{ complex.image } {
}
Complex(double Real=0, double Image=0) :real{ Real }, image{ Image } {
}
//TODO
Complex operator+(const Complex c) {
return Complex(this->real + c.real, this->image + c.image);
}
Complex operator-(const Complex c) {
return Complex(this->real - c.real, this->image - c.image);
}
Complex operator*(const Complex c) {
double _real = this->real * c.real - this->image * c.image;
double _image = this->image * c.real + this->real * c.image;
return Complex(_real, _image);
}
Complex operator/(const Complex c) {
double _real = (this->real * c.real + this->image * c.image) / (c.real * c.real + c.image * c.image);
double _image = (this->image * c.real - this->real * c.image) / (c.real * c.real + c.image * c.image);
return Complex(_real, _image);
}
friend istream &operator>>(istream &in, Complex &c);
friend ostream &operator<<(ostream &out, const Complex &c);
};
//重载>>
istream &operator>>(istream &in, Complex &c) {
in >> c.real >> c.image;
return in;
}
//重载<<
ostream &operator<<(ostream &out, const Complex &c) {
out << "(";
//判断实部是否为正数或0
if (c.real >= EPISON || (c.real < EPISON && c.real > -EPISON)) out.unsetf(std::ios::showpos);
out << c.real;
out.setf(std::ios::showpos);
out << c.image;
out << "i)";
return out;
}
int main() {
Complex z1, z2;
cin >> z1;
cin >> z2;
cout << z1 << " " << z2 << endl;
cout << z1 + z2 << endl;
cout << z1 - z2 << endl;
cout << z1*z2 << endl;
cout << z1 / z2 << endl;
return 0;
}8 C3 G+ [0 U- \